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INTRODUCTION 

1. Motivation 

In the new era of the fourth industrial revolution embedded with 5G networks based Internet of things (IoT), 

about 50 billion devices will be connected to wireless networks for communications and advanced services by 

2021 [1]. In this context, a massive number of mobile users (MUs) requesting high data rate services and 

applications will pose a serious challenge for 5G networks. These certainly make 5G networks deteriorated 

because of extreme traffic congestion at the backhaul links of macro base stations (MBSs) and small cell base 

stations (SBSs). While developing more high-speed backhaul links of the MBSs and the SBSs can significantly 

improve the system delivery capacity, but in a very costly investment with network architecture changes, new 

solutions and techniques can be alternated more effectively. 

Ultra-dense networks (UDNs) have been emerged as a promising architecture to meet the requirements of 

5G networks, i.e., increasing the system capacity 1000 times and decreasing the latency to 1ms [2]. However, 

deploying UDNs requires disruptive technologies, techniques and optimization designs to provide a large number 

of MUs with high data rate and huge size of services and applications, such as video streaming applications and 

services (VAS), at high quality of service (QoS) and resource efficiency. Therefore, many technologies, 

techniques and optimization designs for UDNs have been studied focusing on how to utilize the resources of 

space, time, code, spectrum, bandwidth, energy and storage, and how to bring advanced services closer to the 

MUs. 

Recently, caching technique has drawn significant attention from researchers in both academic and 

industrial sectors to benefit the Internet service providers and content providers as well as to satisfy the high 

demand of MUs for advanced services and applications. In this field, Vietnamese researchers have had the 

opportunity to cooperate with the world-class experts to develop projects and publish research works in prestigious 

journals [14, 19, 21-23, 29-31, 35, 38, 44, 50]. However, these research groups have not comprehensively 

implemented the model, analysis and optimization design of cooperative video caching and delivering in 5G 

UDNs. Therefore, there have had many challenges to improve the capacity of 5G UDNs to provide the MUs with 

advanced services at high QoS and high resource efficiency. In developed countries, researches in this field are 

more in quantity and better in quality, e.g., device-to-device (D2D) caching [15, 20, 33, 42, 45], femto-caching 

[26, 27, 34], small-cell caching [17, 32, 37, 41, 43, 46], MBS caching [39, 40], and multi-tier caching [16, 18, 24, 

25, 28, 36, 47, 48].  

Although researches carried out in developed countries are numerous and make more important 

contributions than Vietnamese researchers do, there are many problems that need more emerging techniques, 

models, analysis, optimization designs, and breakthrough standards to meet the high and complex requirements 

of video caching and delivering in 5G UDNs. 

2. Objectives, subjects, scope and research methods x 

2.1. Objective of research 

In this dissertation, the objective is to propose a multi-tier cooperative video caching and delivery 

optimization in 5G UDNs to provide the MUs with advanced services at high QoS while efficiently exploiting the 

resources. 

2.2. Subjects of research 

▪ 5G UDNs: models, characteristics of multi-tier 5G UDNs including MBS, SBSs (such as microcell, 

picocell, femtocell) and D2D communications. 

▪ Video: common video standards, rate-distortion (RD) and video encoding rate, caching and delivering 

video in 5G UDNs. 

▪ Models: social-ware, QoS and resources in 5G UDNs.   

▪ Algorithms: algorithms to solve the optimization problems of caching, resource sharing and video 

delivering from MBS and SBSs to MUs and among the MUs. 
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2.3. Scope of research 

The dissertation is within the scope of techniques, users, networks and services as well as maths and tools, 

described as follows: 

▪ Techniques: caching and resource sharing techniques in 5G UDNs. 

▪ Users, networks and services:  VAS in 5G UDNs, QoS criteria, resource efficiency, social-aware model, 

i.e., Indian Buffet Model (IBM). 

▪ Maths and tools: searching algorithms, mathematical analysis tools, video encoding tools and the rate-

distortion model of videos. 

2.4. Research methods 

To obtain the results associated with the research objectives, based on the subjects of research, two research 

methods are applied including 1) Analytical and synthetic method and 2) Quantitative research method, given as 

follows: 

▪ Analytical and synthetic methods: Analyzing and evaluating the related works, thereby identifying 

outstanding issues, questions and ideas, and proposing research hypotheses as well as confirming the 

requirements for new better emerging models and solutions. And then, the results of analysis and 

evaluation will be synthesized, linked, combined and reorganized to propose better schemes and solutions 

based on the research hypothesis. 

▪ Quantitative research methods: In the quantitative method, the proposed models and related factors are 

quantified by computational expressions. These computational expressions to describe the system model 

are validated by performing simulations and observing the response of the system. The benefits of the 

proposed model are verified by comparing with other conventional solutions. 

3. Research tasks, achieved results 

3.1. Research tasks 

▪  Research task 1: formulate a social-aware caching and resource sharing (SCS) optimization problem for 

video streaming services in 5G UDNs, compute the system parameters of the proposed model, solve the 

optimization problem by searching algorithm, and simulate and evaluate the proposed model. 

▪  Research task 2: formulate a user-demand-aware multi-rate cooperative video caching and delivery (CRS) 

optimization problem for a high video streaming performance in 5G UDNs, compute the system 

parameters of the proposed model, solve the optimization problem by searching algorithms, and simulate 

and evaluate the proposed model. 

3.2. Achieved results 

The two main results of the dissertation are summarized as follows: 

▪ Result 1: Propose the SCS scheme by exploiting the available caching storage and spectrum resources in 

multi-tier 5G UDNs. 

▪ Result 2:  Propose the CRS scheme by efficiently exploiting the available caching storage and spectrum 

resources in multi-tier 5G UDNs. 

4. Dissertation structure 

Introduction 

Chapter 1:   Overview of Video Caching and Delivering in 5G UDNs. 

Chapter 2:   Social-aware Caching and Resource Sharing Maximized Video Delivery Capacity in 

Multi-tier 5G UDNs. 

Chapter 3:   User-demand-aware Multi-rate Cooperative Video Caching and Delivery in Multi-tier 

5G UDNs. 

Conclusion  
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CHAPTER 1. OVERVIEW OF VIDEO CACHING AND DELIVERING IN 5G UDNs 

1.1. Introduction to 5G UDNs 

The model of 5G UDNs is based on a multi-tier architecture to provide the mobile users (MUs) with various 

services and applications, depicted in Figure 1-1. In this model, the upper tier uses higher spectrum and stronger 

signal with higher transmission rate, while the service and coverage area will be expanded thanks to the middle 

and lower tiers [2, 52]. 5G UDNs allow a flexible combination of communication techniques by exploiting the 

spectrum resources in the network to ensure connectivity and meet the higher user demand. However, 5G UDNs 

have had many challenges about physical issues as well as using and exploiting the information of MUs, such as: 

▪ Ultra dense connectivity from 

different access ranges and traffic at 

different locations. These in turn 

cause local congestion, unfair 

performance and access authority of 

the MUs. 

▪ Private or shared access restrictions 

at different tiers generate different 

interference levels. For example, 

different D2D communications can 

interfere with others and even 

disrupt the access. 

▪ The issue of priority over channel 

access at different frequencies and 

over resource allocation strategies. 

 

Figure 1-1. Connections among devices, technologies and 

applications in 5G UDNs [2] 

It is obvious that the studies aiming at providing solutions to overcome the aforementioned challenges in 

5G UDNs are urgent to optimally using the resources; improve the QoS and even the quality of experience (QoE). 

1.2. Caching and delivering video model in 5G UDNs 

Caching techniques to bring services/ applications/ contents, especially services and applications with high 

capacity and data rate such as video streaming applications and services (VAS), closer to the MUs, can be labeled 

as the most efficient solution to deal with the congestion problem that does not require any system architecture 

changes.  

Caching technique is 

often joint with downlink 

spectrum resource sharing to 

bring more benefits to the 

Internet service providers and 

content providers as well as 

to satisfy the high demand of 

MUs for advanced services 

and applications such as 

video delivering. 

Caching techniques 

include single-tier and multi-

tier caching and delivering. 

Single-tier video caching and  

 
Figure 1-2. Caching and resource sharing model for video services and 

applications in 5G UDNs 

delivering is a technique that allows caching the videos at the MBS, the SBSs, or the MUs with available caching 

storage. Multi-tier cooperative video caching and delivering is a technique that allows caching the videos at more 

than one tier in 5G UDNs (Figure 1-2). 
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Although multi-tier caching is more complex than single-tier caching, the videos can be delivered flexibly 

by the best tier to the MUs. Studies related to multi-tier caching are mainly deployed in two tiers. In this 

dissertation, we deployed the caching technique in three tiers jointed with downlink spectrum resources sharing 

(SUs) for device-to-device (D2D) communications. The tiers cooperate in caching and sharing resources to serve 

the MUs the highest QoS and resource efficiency. 

1.3. Algorithms applied to solve the optimization problems of video caching and delivering 

The joint optimization for caching and resource sharing is a technique that has been applied by many 

researchers to deliver the videos in 5G UDNs with high efficiency and low cost. These caching optimization 

problems are usually solved by finding the indexes that determine the caching placement and selection/allocation 

of resources in the system using binary vectors or matrices, i.e., the values of 1 and 0 meaning that the system 

does (or does not) decide to cache and/or to share. To find the optimal results, optimal search algorithms have 

been proposed to solve the problems such as exhaustive search [18, 54-57], dynamic programming [50], stochastic 

learning [40], game learning [43], greedy algorithms [58], and heuristic algorithms [25, 59]. Each algorithm has 

advantages and disadvantages in terms of accuracy, time, and computational complexity. In this dissertation, a 

genetic algorithm (GA) is applied to solve a typical multi-tier caching and resource sharing optimization problem 

for video streaming in 5G UDNs in the following chapters while a bat algorithm (BA) is also implemented to 

confirm the effectiveness of the GA. In addition, the exhaustive algorithm (EA) is used because of its simplicity, 

accuracy, and suitability for small search space problems, as well as a benchmark for GA and BA. 

1.4. Conclusion of chapter 1 

Chapter 1 introduces an overview of video caching and delivering in 5G UDNs with benefits and challenges 

that need to be researched. Besides, caching and resource sharing in 5G UDNs are also presented in general. The 

advantages and disadvantages of models, caching and sharing techniques of the related works are also analyzed 

and evaluated in detail. Chapter 1 also introduces some algorithms such as EA, GA, BA, which will be 

implemented, compared, and applied to solve optimization problems in Chapters 2 and 3. All is to demonstrate 

the differences and the contributions of the dissertation. 

 

 

CHAPTER 2. SOCIAL-AWARE CACHING AND RESOURCE SHARING 

MAXIMIZED VIDEO DELIVERY CAPACITY IN MULTI-TIER 5G UDNs 

2.1. Introduction to SCS 

In 5G networks, a massive number of connections of high data rate services, e.g., video streaming services, 

certainly make the networks deteriorated because of extreme traffic congestion at the backhaul links of macro 

base stations (MBSs). Although ultra-dense networks (UDNs) have been considered as a promising architecture 

to stimulate the 5G networks, the congestion problem hampers the UDNs to provide mobile users (MUs). In 

Chapter 2, a social-aware caching and resource sharing (SCS) strategy for video streaming services is proposed 

to maximize the video delivery capacity in 5G UDNs. The proposed SCS strategy can relax the workload of the 

core networks in general and the backhaul link of MBS by allowing an arbitrary MU can retrieve the videos 

flexibility from the MBSs, FBSs, and TXs at high cache-hit ratio and maximum delivery capacity. In this context, 

the MUs include Transmitters (TXs) and Receivers (RXs) in D2D communications (TX-RX) and the MUs share 

their downlink spectrum (SUs) with the D2D pairs for D2D communications. The problem is how the SCS delivers 

the videos to the MUs with maximum capacity. 

To solve the aforementioned problem, the SCS strategy is implemented and solved to indicate which FBSs 

caches the videos and which SU shares its downlink resource with the D2D pairs, so as to maximize the average 

system capacity delivered to the MUs. In order to improve the efficiency of the SCS strategy, the SCS problem is 

formulated by taking into account the social relationship of each D2D pair and the available storage of FBSs. 

Furthermore, a SU shares its downlink resources for D2D pairs from TXs to RXs, and the TXs reuse this downlink 

resource will cause interference to the SU. Therefore, the SCS also considers the lower bound constraint of signal 
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to interference plus noise ratio (SINR) at the SU to ensure the quality of the SU. Simulation results are analyzed 

to show the benefits of the proposed SCS strategy compared to other conventional schemes. The results related 

Chapter 2 were published in Mobile Networks & Application journal [C1] and presented at the Heterogeneous 

Networking for Quality, Reliability, Security and Robustness conference (Qshine 2018) [C2] given in the “List 

of publications related to the dissertation” at the end of the document. 

2.2. System model of SCS 

In this chapter, the system 

model of SCS in 5G UDNs consists of 

a device layer and a social layer as 

illustrated in Figure 2-1. In the device 

layer, there are one MBS, I videos, J 

FBSs, K SUs, and N D2D pairs (i.e., 

N TXs and N RXs). In the social layer, 

each D2D pair has its own social 

relationship based on their history 

contact duration and encounter. In this 

model, SCS strategy implemented at 

the MBS is described in the following 

three steps: 

 
Figure 2-1. System model of SCS 

Step 1 – Updating system parameters: In this step, the MBS updates the system parameters of the videos, FBSs, 

SUs, D2D pairs, characteristics of wireless channels, system bandwidth, etc., as listed in Table 2-1 if there 

are some significant changes. 

Step 2 – Formulating and solving SCS optimization problem: The updated parameters enable the MBS to 

formulate the SCS optimization problem and then solve it for the optimal results of 1) number of caching 

copies of each video and caching placements at the FBSs represented by the caching index uj,i,  

j = 1,2,...,J and i = 1,2,...I; 2) downlink resource sharing allocation between the SUs and the D2D pairs 

represented by the caching index 𝑣𝑘,𝑛, k = 1,2,...,K and n = 1,2,...N; to maximize the system delivering 

capacity, where 

uj,i = 1 if the FBS j decides to cache video i, otherwise uj,i = 0 and 

vk,n = 1 if the SU k decides to share its downlink resource with D2D pair n, otherwise vk,n = 0 

Step 3 – Implementing SCS strategy: Finally, based on the optimal results, the MBS assigns the FBSs to cache 

their corresponding videos and the SUs to share theirs downlink resources with the proper D2D pairs, for 

delivering the videos to the MUs (SUs, TXs, and RXs). 

2.3. SCS formulations 

In order to facilitate the formulations, the notations used in this system model are presented in Table 2-1. 

Following the system model and the objective of the chapter, we formulate all the aspects of the SCS including 

the social relationship between the TX and the RX of each D2D pair and the wireless channels that allow us to 

derive the system delivery capacity from the MBS and the FBSs to the MUs and from the TXs to the RXs. 

Consequently, we derive the overall average system delivery capacity, which is the objective function of the SCS 

optimization problem. 

Table 2-1. Notations of SCS 

Symbols Descriptions 

I Number of videos 

J Number of FBSs 

K Number of SUs 
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N Number of D2D pairs, each pair has a D2D transmitter (TX) and a D2D receiver (RX)  

𝑇𝑚𝑖𝑛
𝑖  Minimum time required for offloading the video i, i.e., depending on the length of the video i, 

i = 1, 2,…, I  

𝑠𝑛,𝑖 Social-based probability that the D2D pair n is qualified to offload the optimize video i,  

n = 1, 2,…, N 

𝑢𝑗,𝑖 Caching index, i.e., 𝑢𝑗,𝑖 = 1 if the FBS j decides to cache the video i, otherwise 𝑢𝑗,𝑖 = 0  

𝑣𝑘,𝑛 Downlink resource sharing index, i.e., 𝑣𝑘,𝑛 = 1 if the SU k decides to share its downlink 

resource with the D2D pair n, otherwise 𝑣𝑘,𝑛 = 0 

𝑃𝑀
0  Transmission power of the MBS 

𝑃𝐹
𝑗
 Transmission power of the FBS j, j = 1, 2, ..., J 

𝑃𝑇
𝑛 Transmission power of the TX n of the D2D pair n 

𝐺𝑋,𝑌
𝑥,𝑦

 Channel gain between X and Y, x and y are the index orders of X and Y, respectively 

𝑁0 Power of additive white Gaussian noise (AWGN) 

W System bandwidth 

𝑟𝑖 Access rate (popularity) of the video i 

𝛽𝑛 Percentage of available storage of the TX n 

𝑝𝑛,𝑖 Probability that the TX n decides to cache the video i 


0
 Lower bound constraint of signal to interference plus noise ratio (SINR) at SUs 

𝑅𝑆 Capacity delivered from the MBS and FBSs to the SUs 

𝑅𝑇 Capacity delivered from the MBS and FBSs to the TXs 

𝑅𝑅 Capacity delivered from the MBS, FBSs, and TXs to the RXs 

2.3.1. Social relationships of D2D pairs 

The social relationship between TX and RX of the D2D pair n is used to derive the probability of 

successfully offloading the video i of length 𝑇𝑚𝑖𝑛
𝑖 . 

𝑠𝑛,𝑖 = 1 −∫ 𝑓(𝑢; 𝜅𝑛, 𝜃𝑛)𝑑𝑢
𝛿𝑇𝑚𝑖𝑛

𝑖

0

= 1 −

𝛾 (𝜅𝑛,
𝛿𝑇𝑚𝑖𝑛

𝑖

𝜃𝑛
)

𝛤(𝜅𝑛)
 

(2.5) 

2.3.2. Wireless channels 

The wireless channels are characterized by the channel gains given by 𝐺𝑋,𝑌
𝑥,𝑦

= ℎ𝑋,𝑌
𝑥,𝑦
 𝑔𝑋,𝑌
𝑥,𝑦
, here: 

X  {M, F, T} stands for the source nodes, i.e., {MBS, FBS, TX}  

Y  {S, T, R} stands for the destination nodes, i.e., {SU, TX, RX}. 

where ℎ𝑋,𝑌
𝑥,𝑦

 is the exponential power fading coefficient (~ exp(1)) 

And 𝑔𝑋,𝑌
𝑥,𝑦

= ‖𝑑‖−𝜂 is the standard power law path loss function in which  is the path loss exponent d is 

the distance between X and Y. 

2.3.3. System delivery capacity 

2.3.3.1. Capacity delivered to SUs 

The SNR at the SU k over the channel from the FBS j is given by 

𝛾𝐹,𝑆
𝑗,𝑘,𝑖

=
𝑢𝑗,𝑖𝑃𝐹

𝑗
𝐺𝐹,𝐶
𝑗,𝑘

𝑁0
 (2.7) 

The SINR at the SU k over the channel from the MBS is given by 

𝛾𝑀,𝑆
0,𝑘,𝑖 =

∏ (1 − 𝑢𝑗,𝑖)𝑃𝑀
0𝐺𝑀,𝑆

0,𝑘𝐽
𝑗=1

𝑁0 + ∑ 𝑠𝑛,𝑖𝑣𝑘,𝑛𝑝𝑛,𝑖𝑃𝑇
𝑛𝐺𝑇,𝑆

𝑛,𝑘𝑁
𝑛=1

 (2.8) 

𝑝𝑛,𝑖 the probability of the TX n to cache the video i, defined as  

𝑝𝑛,𝑖 = 𝑎𝑟𝑖 + 𝑏𝛽𝑛 
(2.9) 
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where a, b  [0,1], a + b = 1 and the access rate of the video i modelled by Zipf-like distribution [88], is 

defined as 

𝑟𝑖 =
𝑖−𝛼

∑ 𝑖−𝛼𝐼
𝑖=1

    (2.10) 

here   0 is the skewed access rate among different videos.  = 0 means that all videos have the same 

access rate of 
1

𝐼
 , while a higher value of α causes higher access rate difference between the first popular videos 

and the last unpopular ones. 

Taking the system bandwidth W and the number of videos I into account and applying Shannon-like 

capacity, the capacity delivered to the SUs is obtained as: 

𝑅𝑆 = 𝑊{∑ 𝑟𝑖

𝐼

𝑖=1

∑[𝑙𝑜𝑔2(1 + 𝛾𝑀,𝑆
0,𝑘,𝑖) + ∑𝑙𝑜𝑔2(1 + 𝛾𝐹,𝑆

𝑗,𝑘,𝑖
)

𝐽

𝑗=1

]

𝐾

𝑘=1

} (2.11) 

2.3.3.2. Capacity delivered to TXs 

The capacity delivered from the MBS to the TX and that from the FBS j to the TX n are computed based 

on the SINRs at the TX n, simply given by 

𝛾𝐹,𝑇
𝑗,𝑛,𝑖

=
𝑢𝑗,𝑖𝑃𝐹

𝑗
𝐺𝐹,𝑇
𝑗,𝑛

𝑁0
  (2.12) 

𝛾𝑀,𝑇
0,𝑛,𝑖 =

∏ (1 − 𝑢𝑗,𝑖)𝑃𝑀
0𝐺𝑀,𝑇

0,𝑛𝐽
𝑗=1

𝑁0
 (2.13) 

From Eqs. (2.12) and (2.13), the capacity delivered from the FBSs and the MBS to the TXs is expressed as 

𝑅𝑇 = 𝑊{∑𝑟𝑖

𝐼

𝑖=1

∑[𝑙𝑜𝑔2(1 + 𝛾𝑀,𝑇
0,𝑛,𝑖) + ∑𝑙𝑜𝑔2(1 + 𝛾𝐹,𝑇

𝑗,𝑛,𝑖
)

𝐽

𝑗=1

]

𝑁

𝑛=1

}  (2.14) 

2.3.3.3. Capacity delivered to RXs 

The SINR at the RX n over the channel from the TX n: 

𝛾𝑇,𝑅
𝑛,𝑘,𝑖 =

𝑠𝑛,𝑖𝑣𝑘,𝑛𝑝𝑛,𝑖𝑃𝑇
𝑛𝐺𝑇,𝑅

𝑛,𝑛

𝑁0 + 𝑃𝑀
0𝐺𝑀,𝑅

0,𝑛 + ∑ 𝑠𝑙,𝑖𝑣𝑘,𝑙𝑝𝑙,𝑖𝑃𝑇
𝑙𝑁

𝑙=1,𝑙≠𝑛 𝐺𝑇,𝑅
𝑙,𝑙

 (2.15) 

The SNR at the RX n is computed over the channel from the FBS j as 

𝛾𝐹,𝑅
𝑗,𝑛,𝑘,𝑖

=
𝑢𝑗,𝑖(1 − 𝑠𝑛,𝑖𝑣𝑘,𝑛𝑝𝑛,𝑖)𝑃𝐹

𝑗
𝐺𝐹,𝑅
𝑗,𝑛

𝑁0
 (2.16) 

The SNR at the RX n is computed over the channel from the MBS as 

𝛾𝑀,𝑅
0,𝑛,𝑘,𝑖 =

∏ (1 − 𝑢𝑗,𝑖)(1 − 𝑠𝑛,𝑖𝑣𝑘,𝑛𝑝𝑛,𝑖)𝑃𝑀
0𝐽

𝑗=1 𝐺𝑀,𝑅
0,𝑛

𝑁0
 (2.17) 

So far, the capacity delivered from the MBS, the FBSs, and the TXs to the RXs is expressed as 

𝑅𝑅 = 𝑊{∑ 𝑟𝑖∑∑[𝑙𝑜𝑔2(1 + 𝛾𝑀,𝑅
0,𝑛,𝑘,𝑖) + 𝑙𝑜𝑔2(1 + 𝛾𝑇,𝑅

𝑛,𝑘,𝑖)  + ∑𝑙𝑜𝑔2(1 + 𝛾𝐹,𝑅
𝑗,𝑛,𝑘,𝑖

)

𝐽

𝑗=1

]

𝐾

𝑘=1

𝑁

𝑛=1

𝐼

𝑖=1

} (2.18) 

Finally, from Eqs. (2.11), (2.14) and (2.18), the overall average system delivery capacity per each MU is 

given by 

𝑅 =  
𝑅𝑠  +  𝑅𝑇  +  𝑅𝑅

𝐾 +  2𝑁
 (2.19) 
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2.4. SCS optimization problem and solution 

The SCS optimization problem consists of the objective function (2.19) and the two constraints on 1) the 

storage capacity of the FBSs and 2) the target SINR of the SUs. This problem can be formulated below 

𝑚𝑎𝑥
𝑢𝑗,𝑖,𝑣𝑘,𝑛

𝑅 (2.20) 

𝑠. 𝑡.

{
 
 

 
 ∑

𝐽

𝑗=1
𝑢𝑗,𝑖 ≤ 𝑐𝑖, 𝑖 = 1,2, . . . , 𝐼

∑
𝑁

𝑛=1
𝑠𝑛,𝑖𝑣𝑘,𝑛𝑝𝑛,𝑖𝑃𝑇

𝑛𝐺𝑇,𝐶
𝑛,𝑘 ≤

𝑃𝑀
0𝐺𝑀,𝑆

0,𝑘

𝛾0
− 𝑁0, 𝑘 = 1,2, . . . , 𝐾, 𝑖 = 1,2, . . . , 𝐼 

 (2.21) 

Where, 𝑐𝑖 the optimal number of caching copies of the video i are cached how to maximize the average 

number of copies cached in the FBSs. This problem can be formulated below  

𝑚𝑎𝑥
𝑐𝑖

∑ 𝑟𝑖𝑐𝑖
𝐼

𝑖=1
 (2.22) 

𝑠. 𝑡. {

0 ≤  𝑐𝑖  ≤  𝐽, 𝑖 =  1,2, . . . , 𝐼

∑ 𝑐𝑖  ≤  𝐶
∗

𝐼

𝑖=1
, 𝐼 ≤  𝐶∗  ≤  𝐼 𝐽

 (2.23) 

This problem was solved by an exhaustive matrix search [54] to find 𝑈𝐽𝐼
∗  and 𝑉𝐾𝑁

∗  presented in the  

Algorithm 2.1. 

Algorithm 2.1: Exhaustive matrix search 

1 Input: Initial parameters given in Table 2-2  

Generating two feasible matrix search space 𝒰∗ ∈  𝒰 and 𝒱∗ ∈  𝒱 that satisfy (2.23)  

2 Output: 

ℛ∗ : maximize the average system capacity to MU 

{𝑈𝐽𝐼
∗ , 𝑉𝐾𝑁

∗ }   
3 For each matrix 𝑈𝐽𝐼 in 𝒰∗ do 

4  For each matrix VKN in 𝒱∗ do 

5   𝑅(𝑈𝐽𝐼 , 𝑉𝐾𝑁)  =  𝑅, computing (2.19) 

6   ℛ ←  ℛ ∪  𝑅(𝑈𝐽𝐼 , 𝑉𝐾𝑁)  

7  End for 

8 End for 

9 𝑅∗ =  𝑚𝑎𝑥 ℛ 

10 {𝑈𝐽𝐼
∗ , 𝑉𝐾𝑁

∗ } = argmax ℛ 

2.5. Performance evaluation 

2.5.1. System setting 

To perform evaluation, the system parameters are set as shown in Table 2-2. Furthermore, for convenience 

but without loss of generality, we omit the effect of fading coefficient and only consider the standard power law 

path loss function in which the path loss exponent  = 4 and the distances from the MBS to the MUs, the FBSs to 

the MUs, the SUs to the TXs, and the TXs to the RXs, are randomly distributed from 300m to 1500m, 50m to 

250m, 50m to 100m, and 1m to 50m, respectively. To demonstrate the benefits of our proposed SCS strategy 

(SCS), we compare SCS to the other four schemes including: 1) none social-aware (None-SOA), 2) none downlink 

resource sharing (None-DRS), 3) average system delivery capacity (AVE), and 4) minimum system delivery 

capacity (MIN). 

Table 2-2. Parameters setting of SCS 

Symbols Specifications 

𝐼, 𝐽, 𝐾, 𝑁   5 videos, 3 FBSs, 3 SUs, 5 TX-RX pair 

(𝜃𝑛)   (5, 10, 20, 15, 25) [46] 

(𝜅𝑛)   (1, 4, 3, 2, 5) [46] 
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(𝑇𝑚𝑖𝑛
𝑖 )   (1, 15, 10, 5, 20) s 

(𝛽𝑛)   (0.1, 0.5, 0.9, 0.3, 0.7) 

𝛿, 𝛼, 𝛾0, 𝑁0  10, 2, 5dB, 10−13W 

W, 𝑃𝑀
0 , 𝑃𝐹

𝑗
, 𝑃𝑇

𝑛  5MHz, 5W, 1W, 0.1W 

𝑎, 𝑏, 𝐶∗   0.5, 0.5, 0.7 IJ 

2.5.2. System performance of SCS 

2.5.2.1. System performance versus C* 

We first evaluate the SCS, None-SOA, None-DRS, AVE, and MIN versus caching storage capacity of the 

FBSs by setting 𝐶∗ = {0,0.1,0.2, . . ,1}𝐼𝐽, and compare SCS to None-SOA, None-DRS, AVE and MIN. As 

shown in Figure 2-2, for proper portion of storage capacity cached in the FBSs, we select 𝐶∗= 0.7×IJ. When 

increasing 𝐶∗, he proposed SCS gains higher performance and is always the best compared to the others. The 

None-SOA and None-DRS are similar and better than the AVE and MIN, while the MIN is the worst one. The 

results of None-SOA and None-DRS mean that social-ware and downlink resource sharing issues play an 

equivalent important role in improving the system performance. 

2.5.2.2. System performance versus  

Figure 2-3 plots the performance of SCS, None-SOA, None-DRS, AVE, and MIN versus different duration 

sets of all the considered videos by changing δ in Eq. (2.5) from 1 to 40. In comparison, the proposed SCS is 

better than the others and its performance is reduced to the performance of None-SOA and None-DRS when δ is 

too low (or too high). It interestingly means that the duration of videos can be adjusted to meet the social 

relationships of the D2D pairs, and thus obtaining the highest system performance (i.e.,  = 10). 

 
Figure 2-2. Capacity performance versus caching 

storage capacity of FBSs 

 
Figure 2-3. Capacity performance versus coefficient 

of video length adjustment 

2.5.2.3. System performance versus  

We evaluate the system performance versus the skewed access rate (α) among different videos (from 0 to 

3). The result showed in Figure 2-4. The results demonstrate that exploiting the skewed access rate can improve 

the system performance. If all the videos have the same access rate, i.e., α = 0, the system has a not very high 

benefit gained from the SCS compared to the None-SOA and None-DRS. However, the SCS gets higher system 

delivery capacity when α increases. The results imply that focusing on serving less number of higher access rate 

videos yields higher system performance, and this way, our proposed SCS provides the best system performance 

compared to the None-SOA, None-DRS, AVE, and MIN. 
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Figure 2-4. Capacity performance versus skewed 

access rate of videos 

 
Figure 2-5. Capacity performance versus number of 

D2D pairs 

2.5.2.4. System performance versus N 

In Figure 2-5, the system performance is investigated by changing the number of D2D pairs N from 0 to 

10. It is easy to see that if N = 0, the system does not gain any benefits from downlink resource sharing and social 

relationship for D2D communications. Therefore, the SCS, None-SOA, and None-DRS have the same result and 

the system delivery capacity is low. If N increases, the system delivery capacity gets higher and becomes saturated. 

The saturated situation holds due to the constraint on the target SINR of the SUs that limits the amount of D2D 

communications. In the context of 5G UDNs with dense D2D pairs, we carefully select an efficient number of 

D2D pairs such that the target SINR of the SUs is guaranteed and the system delivery capacity is high enough 

before reaching the saturated situation. The results demonstrate that the SCS gains the best performance, the None-

SOA and None-DRS are better than the AVE and MIN. 

2.5.2.5. System performance versus J 

 
Figure 2-6. Capacity performance versus number of 

FBSs 

 
Figure 2-7. Capacity performance versus target 

SINR of SUs 

Figure 2-6 plots the system performance versus the number of FBSs J. The results show that the number of 

FBSs significantly impacts the system performance. Unlike increasing the number of D2D pairs, increasing the 

number of FBSs in 5G UDNs makes the system delivery capacity improved rapidly without getting saturated 

because the constraints on cross-tier and co-tier interferences are not considered thanks to the use of channel 

splitting and FALOHA schemes [79,80]. 

2.5.3. System performance versus 0 

We investigate the system performance under the impact of the target SINR of the SUs γ0. As shown in 

Figure 2-7, the system delivery capacity of the SCS and None-SOA decreases and approaches that of the None-
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DRS when γ0 increases. The reason is that if γ0 is low, more D2D pairs are shared the downlink resource from the 

SUs to offload the videos for higher system delivery capacity. Otherwise, if γ0 is high, less D2D pairs offload the 

videos with lower system delivery capacity. The system delivery capacity of MIN increases because when γ0 

increases, more candidate matrices that cause higher interference impact on the SUs are removed from the search 

space 𝒱 . It can be seen obviously that the results of the None-DRS are not affected by γ0 because there is no 

interference effect from D2D communications on the SUs. In this scenario, the proposed SCS also surpasses the 

other None-SOA, None-DRS, AVE, and MIN.   

2.5.4. System performance versus distance between MBS and MUs 

Finally, we evaluate the system performance versus the distance between the MBS and the MUs   

d1[5, 10]m, d2[10, 20]m, d3[20, 100]m, d4[100, 500]m, d5[200, 1000]m, d6[300, 1500]m,  

d7[400, 2000]m and d8 [500, 2500]m. In this scenario, we only consider the performance of the SCS with 

different number of FBSs J from 1 to 5. The results in Figure 2-8 show that if the number of FBSs is low  

(i.e., J = 1 and J = 2), the MUs are more likely to be served by the MBS at low system delivery capacity. It is easy 

to see that if the MUs are too close to the MBS, all the MUs are served by only the MBS at the same system 

delivery capacity. However, if the number of FBSs increases (i.e., J = 3, J = 4, and J = 5), the MUs are more likely 

to be served by the FBSs at higher system capacity delivery. Thanks to the high caching storage capacity of the 

FBSs (C∗ = 0.7 × IJ), the MBS does not involve in serving the MUs event if the MUs are in very close proximity 

to the MBS. Interestingly, there exists the best region (i.e., d6 ∈ [300, 1500]m) in which the MUs are served the 

highest system capacity delivery when they are not very close to and not very far from the MBS. In other words, 

the MUs in this region are optimally served by all the MBS, the FBSs, and the TXs. 

For further understanding, we consider the scenarios of lower caching storage capacity of the FBSs  

𝐶∗ = {0.6, 0.5, 0.4, 0.3}  I  J as shown in Figure 2-9.  

 

Figure 2-8. Capacity performance versus the 

distance between MBS and MUs 

 

Figure 2-9. Capacity performance versus the distance 

between MBS and MUs with lower C* 

It can be seen that if the caching storage capacity of the FBSs is too low (𝐶∗= 0.3 IJ) (Figure 2-9d), he 

MUs are mostly served by the MBS when they are closer to the MBS. Especially, in case of d1  [5, 10]m, the 

performance of the SCS is the same for all cases of J = 1, J = 2, J = 3 and J = 4 because all the MUs are served 

by only the MBS. Obviously, if 𝐶∗ increases, the probability that the MUs are served by the MBS is reduced. It 

is important to conclude that the increasing of both 𝐶∗ and J in 5G UDNs can relax the workload of the MBS. 

2.6. Conclusion of chapter 2 

We have proposed a social-aware caching and resource sharing (SCS) optimization solution for video 

delivering at high capacity in 5G UDNs. In particular, the storage of the MBS, the FBSs, and the TXs are utilized 

to bring the videos closer to the MUs and the downlink resources of the SUs are shared with the D2D pairs for 
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D2D communications. For more efficiency, we exploit the social relationships of the D2D pairs and the access 

rate (or the popularity) of the videos in our SCS optimization solution. The SCS optimization solution is carefully 

analyzed by taking into account the target SINR of the SUs to guarantee their QoS. This way, the SCS strategy 

can relax the workload at backhaul links of the MBS and the FBSs; provide the MUs with high cache-hit ratio 

video services by requesting the videos alternately from the MBS, the FBSs, and the TXs; and serve the MUs 

maximum video delivery capacity. The interesting findings are that 1) a proper duration set of videos selected in 

accordance with a given set of social relationships of D2D pairs can provide the MUs with the highest system 

delivery capacity and 2) there exists the best region in which the MUs are served the highest system delivery 

capacity. These findings can help both the Internet service providers and content providers insightfully understand 

the 5G UDNs to serve the MUs more efficiently. 

However, the SCS scheme still has some limitations such as: 1) the inability to select the proper video 

versions to cache in the FBSs, to achieve higher system performance, 2) the impossibility to pair the caching users 

(CUs) that have the videos, with the normal users (NUs) that request the video, and 3) the system evaluation is 

delivery capacity (expressed in bps) that does not explicitly specify the video quality at the receiver. These existing 

problems will be solved in Chapter 3.  

 

CHAPTER 3. USER-DEMAND-AWARE MULTI-RATE COOPERATIVE VIDEO 

CACHING AND DELIVERY IN MULTI-TIER 5G UDNs  

3.1. Introduction to CRS 

This chapter formulates a user-demand-aware multi-rate cooperative video caching and delivery (CRS) 

optimization problem for a high video streaming performance in 5G ultra-dense networks. On the one hand, the 

CRS enables the MUs to receive the video flexibly from MBS (macro tier), FBSs (femto tier), and D2D 

communications (user tier) in 5G UDNs. On the other hand, the CRS overcomes the issues about caching, sharing 

and system evaluation parameters of SCS scheme in Chapter 2. 

About caching, the CRS considers the playback resolution of MUs, thereby determining the throughput 

required by MUs to cache different video versions to efficiently exploiting the available caching storage and 

spectrum resources. About resource sharing, the CRS allows a normal user (NU) to select a caching user (CU) 

and a user who agrees to share the spectrum (SU) to set up a tripartite (SU, CU, NU) for D2D communications, 

instead of matching an SU and a pair of (CU, NU) in the SCS scheme. Setting up a tripartite will expand the 

choices for getting the best D2D communications. About the system evaluation parameters, in this chapter, the 

system performance is evaluated more explicitly by converting the system delivery capacity to the peak signal-

to-noise ratio (PSNR) measured in dB, through the relation between delivery capacity and playback quality using 

some computations of capacity success probabilities. 

Motivated by the aforementioned discussions, the CRS problem is proposed to simultaneously implement 

1) from which tier the videos are delivered, 2) which video version will be cached in which FBS, and 3) which 

tripartite (SU, CU, NU) will be matched? The objective of the CRS solution is to maximize the video playback 

quality while saving the caching storage of FBSs and satisfying a given throughput required by the MUs. The 

results related to chapter 3 are [C2] and [C3] given in the “List of publication related to the dissertation” at the 

end of the document. 

3.2. System model and Formulations 

3.2.1. System Model 

In this chapter, the CRS model for VASs in 5G UDNs illustrated in Figure 3-1. The notations used in this 

system model are presented in Table 3-1.  
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The model has one MBS 

in the macro tier, J FBSs in the 

femto tier, a number of MUs 

including K SUs, N CUs, and M 

NUs in the user tier, and I videos. 

Video i, i = 1, 2,…, I, has 𝑉𝑖 

versions encoded at different 

encoding rates. The video versions 

are sent from the MBS to the MUs 

through conventional cellular 

transmissions, from the FBSs to 

the MUs by using the channel 

splitting and F-ALOHA schemes 

to avoid the interferences [48] and 

from the CUs to the NUs over 

D2D communications reusing the 

downlink resources of SUs. 

 

Figure 3-1. System models of CRS 

Table 3-1. Notations of CRS 

Symbols Descriptions 

I, J, K, N, M Number of videos, FBSs, SUs, CUs, NUs 

𝑉𝑖 Video version i, i=1, 2,…, I 

𝑤𝑛,𝑚
𝑘  

Downlink resource sharing index, i.e., 𝑤𝑛,𝑚
𝑘 = 1 if SU k decides to share its downlink 

resource with the CU n and NU m in D2D communication and otherwise 𝑤𝑛,𝑚
𝑘 = 0 

𝑢𝑗
𝑣𝑖 Caching index, i.e., 𝑢𝑗

𝑣𝑖 = 1 if FBS j cache video version 𝑣𝑖 and otherwise 𝑢𝑗
𝑣𝑖 = 0 

𝑃𝑀
0  Transmission power of the MBS 

𝑃𝐹
𝑗
 Transmission power of the FBS j, j = 1, 2, ..., J 

𝑃𝑇
𝑛 Transmission power of the CU n of the D2D pair n 

𝐺0
𝑘 Channel gain from MBS to SU k 

𝑁0 Power of additive white Gaussian noise (AWGN) 

W System bandwidth 

𝐿𝐹
𝑖  Total storage consumed to cache all versions of the video i in the FBSs 

𝐿𝑚𝑎𝑥
𝑖  

Upper limit of total storage consumption of FBSs to cache all the versions of the video i, 

i.e.,   

       𝐿𝑚𝑎𝑥
𝑖 =  𝑟𝑖 𝐼 𝐽 𝑚𝑎𝑥{𝐿𝑖

𝑣𝑖 ,  𝑣𝑖 = 1,2,   … , 𝑉𝑖},  

here   𝑟𝑖  =  𝑖
−𝛼(∑ 𝑖−𝛼𝐼

𝑖=1 )
−1

 is the popularity of the video i with skewed popularity 

exponent α modeled as Zipf-like distribution [88] 

C, C* Total throughput required by MUs and its upper limit 

 and  µ and δ where 0 < µ, δ ≤ 1 are used to flexibly adjust the upper limits 𝐿𝑚𝑎𝑥
𝑖  and C*  

Assume that the system parameters remain at least during a streaming session of the longest video version. 

Under this assumption, the CRS model efficiently serves the MUs the local VASs in crowded areas such as concert 

or meeting halls, museums, office buildings, stadiums, hospitals, campuses, etc. Whenever the MBS anticipates 

that there will be an increasing number of video requests, it implements the CRS scheme in three steps: i) updating 

system parameters, ii) formulating and solving the CRS optimization problem, and iii) delivering the videos, as 

following: 

▪ First, the MBS updates the system parameters such as wireless channel characteristics; caching storage of 

FBSs and CUs; video information (version, size, and popularity); required throughput of MUs for video 

playback; and target SINR of SUs. 
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▪ Second, the MBS formulates the constrained CRS optimization problem and solves it for the optimal sharing 

index 𝑤𝑛,𝑚
𝑘  and the optimal caching index 𝑢𝑗

𝑣𝑖. 𝑤𝑛,𝑚
𝑘   indicates if the SU k shares its downlink with the CU n 

to send the video version vi to the NU m (𝑤𝑛,𝑚
𝑘 = 1) or not (𝑤𝑛,𝑚

𝑘 = 0), n = 1, 2, …, N,  

m = 1, 2, …, M, and vi = 1, 2, …, Vi . Here the video version vi is cached in the CU n with probability 𝑃𝑛
𝑣𝑖 

depending on the remaining storage of the CU and the size and popularity of the video version. 𝑢𝑗
𝑣𝑖 indicates 

if FBS j cache video version 𝑣𝑖 (𝑢𝑗
𝑣𝑖 = 1) or not 𝑢𝑗

𝑣𝑖 = 0,  j = 1, 2, …, J.  

▪ Finally, by cooperating with the video versions cached in the MBS, the CRS delivers the video versions 

flexibly from the MBS, FBSs, and CUs to the Mus. 

3.3. System Formulations of CRS 

3.3.1. Capacity Success Probability at SUs 

The capacity success probability at the SU k is derived from its capacities over the channels from the FBS j 

𝐶𝑗
𝑘,𝑣𝑖 = 𝑊 𝑙𝑜𝑔2 (1 +

𝑢𝑗
𝑣𝑖𝑃𝑗𝐺𝑗

𝑘

𝑁0
) (3.1) 

And the MBS: 

𝐶0
𝑘,𝑣𝑖 = 𝑊 𝑙𝑜𝑔2 (1 +

∏ (1 −  𝑢𝑗
𝑣𝑖)𝑃0𝐺0

𝑘𝐽
𝑗=1

𝑁0 + 𝐼𝐶,𝑆
𝑘,𝑣𝑖

) (3.2) 

When 𝐼𝐶,𝑆
𝑘,𝑣𝑖 = ∑ ∑ 𝑤𝑛,𝑚

𝑘𝑀
𝑚=1 𝑝𝑛

𝑣𝑖𝑃𝐶
𝑘𝐺𝑛

𝑘𝑁
𝑛=1   

and 𝑝𝑛
𝑣𝑖 is the probability that the CU n caches the video version 𝑣𝑖, given by 

𝑝𝑛
𝑣𝑖 = 𝑎𝑟𝑖 + 𝑏𝜃𝑛

𝑣𝑖 (3.3) 

when a, b  [0, 1] and 𝑟𝑖 is Zipf-like distribution. 

Then, the capacity success probabilities at SU k from FBS j given by 

𝑝𝑗
𝑘,𝑣𝑖 = 𝑃𝑟{𝐶𝑗

𝑘,𝑣𝑖 ≥ 𝐶th
vi} = exp(

−𝜉𝑗
𝑘,𝑣𝑖𝑁0

𝑢𝑗
𝑣𝑖𝑃𝑗

) (3.6) 

And the capacity success probabilities at SU k from MBS given by 

𝑝0
𝑘,𝑣𝑖 = 𝑃𝑟{𝐶0

𝑘,𝑣𝑖 ≥ 𝐶th
vi} = exp

{
 
 

 
 

-ξ0

k,vi

[
 
 
 
 

λC
k,vi (

PC
k

∏ (1-uj

vi)P0
J
j=1

)

2
η

]
 
 
 
 

}
 
 

 
 

 (3.7) 

when   

▪ 𝜉𝑗
𝑘,𝑣𝑖 = (𝑑𝑗

𝑘)
𝜂
(2

𝐶
𝑡ℎ

𝑣𝑖

𝑊 − 1), 𝜉0
𝑘,𝑣𝑖 =  𝜋(𝑑0

𝑘)
2
 Γ (1 + 

2

𝜂
)   Γ (1 − 

2

𝜂
) (2

𝐶
𝑡ℎ

𝑣𝑖

𝑊 − 1)

2
𝜂⁄

   

▪ 𝑑𝑗
𝑘 and 𝑑0

𝑘 are the distances from the FBS j and the MBS to the SU k 

▪ 𝜆𝐶
𝑘,𝑣𝑖 = ∑ ∑ 𝑤𝑛,𝑚

𝑘𝑀
𝑚=1 𝑝𝑛

𝑣𝑖𝑁
𝑛=1  the density within a circular cell area 

So, the capacity success probability to send the video version 𝑣𝑖 from FBS j and the MBS to SU k is 

𝑝0,𝑗
𝑘,𝑣𝑖 = 1 − (1 − 𝑝𝑗

𝑘,𝑣𝑖) (1 − 𝑝0
𝑘,𝑣𝑖) (3.8) 

3.3.2. Capacity Success Probability at CUs 

The capacities at the CU n over the channel from FBS j and MBS are expressed as 

𝐶𝑗,𝑛
𝑣𝑖 = 𝑊 𝑙𝑜𝑔2 (1 +

𝑢𝑗
𝑣𝑖𝑃𝑗𝐺𝑗

𝑛

𝑁0
) (3.9) 
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and 

𝐶0,𝑛
𝑣𝑖 = 𝑊 𝑙𝑜𝑔2(1 +

∏ (1 − 𝑢𝑗
𝑣𝑖)𝑃0𝐺0

𝑛𝐽
𝑗=1

𝑁0
) (3.10) 

We then obtain the corresponding capacity success probabilities at the CU n as follows 

▪ From FBS j to CU n: 

𝑝𝑗,𝑛
𝑣𝑖 = 𝑃𝑟{𝐶𝑗,𝑛

𝑣𝑖 ≥ 𝐶𝑡ℎ
𝑣𝑖} = exp(

−𝜉𝑗
𝑛,𝑣𝑖𝑁0

𝑢𝑗
𝑣𝑖𝑃𝑗

) (3.11) 

▪ From MBS to CU n: 

𝑝0,𝑛
𝑣𝑖 = 𝑃𝑟{𝐶0,𝑛

𝑣𝑖 ≥ 𝐶𝑡ℎ
𝑣𝑖} = exp(

−𝜉0
𝑛,𝑣𝑖𝑁0

∏ (1 − 𝑢𝑗
𝑣𝑖)𝑃0

𝐽
𝑗=1

)  (3.12) 

when   

o 𝜉𝑗
𝑛,𝑣𝑖 = (𝑑𝑗

𝑛)
𝜂
(2

𝐶
𝑡ℎ

𝑣𝑖

𝑊 − 1) and 𝜉0
𝑛,𝑣𝑖 =  𝜋(𝑑0

𝑛)𝜂 (2
𝐶
𝑡ℎ

𝑣𝑖

𝑊 − 1)  

o 𝑑𝑗
𝑛 and 𝑑0

𝑛 are the distances from the FBS j and the MBS to CU n. 

Therefore, the capacity success probability to send the video version 𝑣𝑖 from the FBS j and the MBS to  

CU n is 

𝑝0,𝑗,𝑛
𝑣𝑖 = 1 − (1 − 𝑝𝑗,𝑛

𝑣𝑖 ) (1 − 𝑝0,𝑛
𝑣𝑖 ) (3.13) 

3.3.3. Capacity Success Probability at NUs  

Different from SUs and CUs, the capacities at the NU m, which come from the CUs, FBSs, and MBS, are 

respectively computed as 

𝐶𝑛,𝑚
𝑘,𝑣𝑖 = 𝑊 𝑙𝑜𝑔2 (1 +

𝑤𝑛,𝑚
𝑘 𝑝𝑛

𝑣𝑖𝑃𝐶
𝑘𝐺𝑛

𝑚

𝑁0 + 𝑃0𝐺0
𝑚 + 𝐼𝐶,𝐶

𝑘,𝑣𝑖
) (3.14) 

𝐶𝑗,𝑚
𝑘,𝑣𝑖 = 𝑊 𝑙𝑜𝑔2 (1 +

𝑢𝑗
𝑣𝑖(1 − 𝑤𝑛,𝑚

𝑘 𝑝𝑛
𝑣𝑖)𝑃𝑗𝐺𝑗

𝑚

𝑁0
) (3.15) 

and 

𝐶0,𝑚
𝑘,𝑣𝑖 = 𝑊 𝑙𝑜𝑔2(1 +

∏ (1 − 𝑢𝑗
𝑣𝑖) (1 − 𝑤𝑛,𝑚

𝑘 𝑝𝑛
𝑣𝑖)𝑃0𝐺0

𝑚𝐽
𝑗=1

𝑁0
) (3.16) 

here 𝐼𝐶,𝐶
𝑘,𝑣𝑖 = ∑ ∑ 𝑤𝑛′,𝑚′

𝑘𝑀
𝑚′=1
𝑚′≠𝑚

𝑝
𝑛′
𝑣𝑖𝑃𝐶

𝑘𝐺𝑛′,𝑚′
𝑘𝑁

𝑛′=1
𝑛′≠𝑛

 

So, the corresponding capacity success probabilities are 

𝑝𝑛,𝑚
𝑘,𝑣𝑖 = 𝑃𝑟{𝐶𝑛,𝑚

𝑘,𝑣𝑖 ≥ 𝐶th

𝑣𝑖} = exp{−𝜉𝑛,𝑚
𝑣𝑖 [𝜆𝑀 (

𝑃0

𝑤𝑛,𝑚
𝑘 𝑝𝑛

𝑣𝑖𝑃𝐶
𝑘
)

2
𝜂

+ 𝜆𝐶
′𝑘,𝑣𝑖]} (3.17) 

𝑝𝑗,𝑚
𝑘,𝑣𝑖 = 𝑃𝑟{𝐶𝑗,𝑚

𝑘,𝑣𝑖 ≥ 𝐶th

𝑣𝑖} = exp [
−𝜉𝑗,𝑚

𝑣𝑖 𝑁0

𝑢𝑗
𝑣𝑖(1 − 𝑤𝑛,𝑚

𝑘 𝑝𝑛
𝑣𝑖)𝑃𝑗

] (3.18) 

and 
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𝑝0,𝑚
𝑘,𝑣𝑖 = 𝑃𝑟{𝐶0,𝑚

𝑘,𝑣𝑖 ≥ 𝐶th

𝑣𝑖} = exp [
−𝜉0,𝑚

𝑣𝑖 𝑁0

∏ (1 − 𝑢𝑗
𝑣𝑖) (1 − 𝑤𝑛,𝑚

𝑘 𝑝𝑛
𝑣𝑖)𝑃0

𝐽
𝑗=1

] (3.19) 

where 

▪ 𝜉𝑗,𝑚
𝑣𝑖 = (𝑑𝑗

𝑚)
𝜂
(2

𝐶
𝑡ℎ

𝑣𝑖

𝑊 − 1) ▪ 𝜉0,𝑚
𝑣𝑖 = (𝑑0

𝑚)𝜂 (2
𝐶
𝑡ℎ

𝑣𝑖

𝑊 − 1) 

▪ 𝜉𝑛,𝑚
𝑣𝑖 =  𝜋(𝑑𝑛

𝑚)2 𝛤 (1 + 
2

𝜂
)   𝛤 (1 − 

2

𝜂
)  (2

𝐶
𝑡ℎ

𝑣𝑖

𝑊 − 1)

2
𝜂⁄

 

▪ 𝑑𝑛
𝑚, 𝑑𝑗

𝑚 and 𝑑0
𝑚 are the distances from the CU n, the FBS j and the MBS to NU m  

▪ 𝜆′𝐶
𝑘,𝑣𝑖 = ∑ ∑ 𝑤𝑛′,𝑚′

𝑘𝑀
𝑚′=1
𝑚′≠𝑚

𝑝
𝑛′
𝑣𝑖𝑁

𝑛′=1
𝑛′≠𝑛

 the density within a circular cell area 

Finally, the capacity success probability at the NU m is 

𝑝0,𝑗,𝑛,𝑚
𝑘,𝑣𝑖 = 1 − (1 − 𝑝𝑛,𝑚

𝑘,𝑣𝑖) (1 − 𝑝𝑗,𝑚
𝑘,𝑣𝑖) (1 − 𝑝0,𝑚

𝑘,𝑣𝑖) (3.20) 

3.3.4. Average Quality of Received Videos  

if the video version 𝑣𝑖 is played back at rate or capacity 𝐶𝑡ℎ
𝑣𝑖 , the corresponding reconstructed distortion is 

𝐷𝑖(𝐶th

𝑣𝑖) = 𝛾𝑖(𝐶th

𝑣𝑖)
𝛽𝑖

 (3.21) 

where 𝛾𝑖 and 𝛽𝑖 are the sequence-dependent parameters selected so that Eq. (3.21) meets the experimental RD 

curves. We can compute the overall average quality values of received videos at the Mus (i.e., SUs, CUs, NUs) 

as below 

𝑄 =
∑ (𝑄𝑆

𝑗
+ 𝑄𝐶

𝑗
+ 𝑄𝑁

𝑗
)

𝐽
𝑗=1

3𝐽
 (3.22) 

where 

𝑄𝑆
𝑗
=
1

𝐾
∑∑

𝑟𝑖
𝑉𝑖

𝐼

𝑖=1

∑ 𝑝0,𝑗
𝑘,𝑣𝑖𝑄 (𝐷𝑖(𝐶𝑡ℎ

𝑣𝑖))

𝑉𝑖

𝑣𝑖=1

𝐾

𝑘=1

    (3.23) 

𝑄𝐶
𝑗
=
1

𝑁
∑∑

𝑟𝑖
𝑉𝑖

𝐼

𝑖=1

∑ 𝑝0,𝑗,𝑛
𝑣𝑖 𝑄 (𝐷𝑖(𝐶𝑡ℎ

𝑣𝑖))

𝑉𝑖

𝑣𝑖=1

𝑁

𝑛=1

 (3.24) 

𝑄𝑁
𝑗
=

1

𝐾𝑀𝑁
∑∑ ∑∑

𝑟𝑖
𝑉𝑖

𝐼

𝑖=1

∑ 𝑝0,𝑗,𝑛,𝑚
𝑘,𝑣𝑖 𝑄 (𝐷𝑖(𝐶𝑡ℎ

𝑣𝑖))

𝑉𝑖

𝑣𝑖=1

𝑀

𝑚=1

𝑁

𝑁=1

𝐾

𝑘=1

 (3.25) 

where 𝑄 (𝐷𝑖( 𝐶𝑡ℎ
𝑣𝑖)) = 10 𝑙𝑜𝑔10

2552

𝐷𝑖( 𝐶𝑡ℎ
𝑣𝑖)

 is the peak signal-to-noise ratio (PSNR) measured in dB. 

3.4. CRS Optimization and Genetic Algorithms (GA) 

3.4.1. CRS Optimization Problem 

To implement of the CRS optimization problem, we further compute the total storage of FBSs (𝐿𝐹
𝑖 ) used to 

cache all versions of the video I and the total throughput required by MU (C) which are considered in the 

constraints of the CRS optimization problem as below 

𝐿𝐹
𝑖 =∑∑ 𝑢𝑗

𝑣𝑖𝐿𝑖
𝑣𝑖

𝑉𝑖

𝑣𝑖=1

𝐽

𝑗=1

 (3.26) 

𝐶 = 𝐶𝑆 + 𝐶𝐶 + 𝐶𝑁 (3.27) 
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where 

𝐶𝑆 =∑∑∑
𝑟𝑖
𝑉𝑖

𝐼

𝑖=1

∑ (𝐶𝑗
𝑘,𝑣𝑖 + 𝐶0

𝑘,𝑣𝑖)

𝑉𝑖

𝑣𝑖=1

𝐾

𝑘=1

𝐽

𝑗=1

 (3.28) 

𝐶𝐶 =∑∑∑
𝑟𝑖
𝑉𝑖

𝐼

𝑖=1

∑ (𝐶𝑗,𝑛
𝑣𝑖 + 𝐶0,𝑛

𝑣𝑖 )

𝑉𝑖

𝑣𝑖=1

𝑁

𝑛=1

𝐽

𝑗=1

 (3.29) 

𝐶𝑁 =∑∑∑ ∑∑
𝑟𝑖
𝑉𝑖

𝐼

𝑖=1

∑ (𝐶𝑛,𝑚
𝑘,𝑣𝑖 + 𝐶𝑗,𝑚

𝑘,𝑣𝑖 + 𝐶0,𝑚
𝑘,𝑣𝑖)

𝑉𝑖

𝑣𝑖=1

𝑀

𝑚=1

𝑁

𝑁=1

𝐾

𝑘=1

𝐽

𝑗=1

 (3.30) 

Finally, the CRS optimization problem is formulated as 

𝑚𝑎𝑥
𝑢
𝑗

𝑣𝑖 ,𝑤𝑛,𝑚
𝑘
𝑄 (3.31) 

𝑠. 𝑡.

{
 
 
 
 
 
 

 
 
 
 
 
 ∑ 𝑢𝑗

𝑣𝑖
𝑉𝑖

𝑣𝑖=1
≤ 1, 𝑖 = 𝐼, . . . , 𝐼, 𝐼1,2, . . . , 𝐽,

∑ 𝑤𝑛,𝑚
𝑘

𝑀

𝑚=1
≤ 𝐼𝑘 = 1,2, . . 𝐼, 𝑛 = 1,2, . . . , 𝑁,

∑ 𝐼
𝑁

𝑛=1
≤ 1, 𝑘 = 𝐼, . . . , 𝐾,𝑚 = 1,2, . . . , 𝑀,

∑ 𝑤𝑛,𝑚
𝑘

𝐾

𝑘=1
≤ 1, 𝑛 = 1,2,… ,𝑁,𝑚 = 1,2,… ,𝑀,

𝐿𝐹
𝑖 ≤ 𝜇𝐼, 𝑖 = 1,2, . . . , 𝐼,
𝐶 ≤ 𝛿𝐶∗

𝐼𝐶,𝑆
𝑘,𝑣𝑖 ≤

𝑃0𝐺0
𝑘

𝛾0
−𝑁0, 𝑘 = 1,2, … , 𝐾, 𝐼1,2,… , 𝐼, 𝑣𝑖 = 1,2, . . . , 𝑉𝑖 

   (3.32) 

 

 

3.4.2. Genetic Algorithms for CRS problem 

We apply the GA tool introduced in [62] to solving the CRS optimization problem. The shortage of this 

GA tool is that it is able to deal with simple constraints of lower and upper bounds, but not with complicated 

constraints as aforementioned in. The solution for the complicated constraints is penalty method that converts 

constrained to an unconstrained optimization problem [99-102]. 

To do so, we rewrite the constraints (3.32) as below 

{
 
 
 
 
 
 

 
 
 
 
 
 𝛥𝑢𝑖,𝑗 = 1 − ∑ 𝑢𝑗

𝑣𝑖𝑉𝑖
𝑣𝑖=1

≥ 0, 𝑖 = 1,2, … , 𝐼, 𝑗 = 1,2, … , 𝐽,

𝛥𝑤𝑘,𝑛 = 1 − ∑ 𝑤𝑛,𝑚
𝑘𝑀

𝑚=1 ≥ 0, 𝑘 = 1,2,… , 𝐾, 𝑛 = 1,2,… ,𝑁,

𝛥𝑤𝑘,𝑚 = 1 − 𝐼 ≥ 0, 𝑘 = 1,2, … , 𝐾,𝑚 =  1,2, . . . , 𝑀

𝛥𝑤𝑛,𝑚 = 1 − ∑ 𝐼𝐾
𝑘=1 ≥ 0, 𝑛 = 1,2,… ,𝑁,𝑚 =  1,2, . . . , 𝑀

𝛥𝐿𝐹
𝑖 = 𝜇𝐿maxi − 𝐿𝐹

𝑖 ≥ 0, 𝑖 = 1,2, … , 𝐼,

𝛥𝐶 = 𝛿𝐶∗ − 𝐶 ≥ 0,

𝛥𝐼𝐶,𝑆
𝑘,𝑖,𝑣𝑖 =

𝑃0𝐺0
𝑘

𝛾0
−𝑁0 − 𝐼𝐶,𝑆

𝑘,𝑣𝑖 ≥ 0, 𝑘 = 1,2, … , 𝐾, 𝑖 = 1,2, … , 𝐼, 𝑣𝑖 = 1,2,… , 𝑉𝑖.

  (3.33) 

Then, we derive the penalty function consisting of all the above constraints expressed in (3.33) 
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Finally, the GA solution is able to solve the following unconstrained optimization problem 

𝑚𝑎𝑥
𝑢
𝑗

𝑣𝑖 ,𝑤𝑛,𝑚
𝑘
𝑄𝐹 = 𝑄 − 𝐹. (3.35) 

 

Algorithm 3.1. Genetic Algorithm 

1 Input: System parameters as shown in Table 3-2 

NP  = 20,000; Population, i.e. number of individuals 

PRECI = J*I*Vi + K*N*M: Number of bits of a chromosome or a binary string 

PG  = 0.9: Generation gap  

PC  = 0.9: Crossover probability 

Pm  = 10-6: Mutation probability 

Generating the initial generation including NP random individuals of solution set 

 {𝑋𝑧}, z = 1, 2,… NP 

Gen = 0: Number of Generations 

TC: Termination conditions 

2 Output: 𝑋∗ and  𝑄̅𝐹
∗  

3 While TC does not hold do  

4  Gen = Gen + 1 

5  Putting {𝑋𝑧} and  𝑄̅𝐹(𝑋𝑧) in the mating pool for ranking 

6 
 

Select 𝑁𝑃𝐺𝑃𝐺  better individuals in {𝑋𝑧} with higher 𝑄̅𝐹(𝑋𝑧) for breeding the next generation by 

using stochastic universal sampling operator 

7 

 

Selecting a pair of parents to generate a pair of offsprings by using double point crossover 

operator. The crossover operator is not required to be applied to all the chosen pairs, but done with 

a crossover probability PC 

8  Mutating the offsprings with a mutation probability PM to recover good genetic materials 

9  Evaluating the fitness values of the offsprings, reinserting them into the present generation 

10 End While 

11 Finding the best fitness value 𝑄̅𝐹
∗  with respect to the best individual 𝑋∗ in the last generation 

 

3.5. Performance Evaluation of CRS and Genetic Algorithm 

3.5.1. System parameters and Computer Information 

To evaluate the CRS and the GA performance, the CRS model is deployed with the parameters set in  

Table 3-2. Assuming that the MBS covers the circular cell area within the radius of 1500m and the relative 

distances between the MBS and the MUs, the FBSs and the MUs, the CUs and the SUs, and the CUs and the NUs, 

are randomly distributed in the ranges of [500, 1500]m, [20, 100]m, [50, 150]m, [1, 20]m. In addition, we take 

into account 3 videos, i.e., 𝑉1
𝑣1 (Basketballpass), 𝑉2

𝑣2 (Racehourses) and  𝑉3
𝑣3 (Foreman) to analyze their 

experimental RD curves by using HM reference software version 12.0 [52] and obtain 𝐿𝑖
𝑣𝑖, 𝐶𝑡ℎ

𝑣𝑖 , 𝛾𝑖 and 𝛽𝑖 given in 

Table 3-2.  

 

F  =    

 

 

 

 

 

    𝜆1∑ ∑ (min{0, 𝛥𝑢𝑖,𝑗})
2𝐽

𝑗=1
𝐼
𝑖=1  + 𝜆2∑ ∑ (min{0, 𝛥𝑤𝑘,𝑛})

2𝑁
𝑛=1

𝐾
𝑘=1   

+ 𝜆3∑ ∑ (min{0, 𝛥𝑤𝑘,𝑚})
2𝑀

𝑚=1
𝐾
𝑘=1  + 𝜆4∑ ∑ (min{0, 𝛥𝑤𝑛,𝑚})

2𝑀
𝑚=1

𝑁
𝑛=1  

+ 𝜆5∑ (min{0, 𝛥𝐿𝐹
𝑖 })

2𝐼
𝑖=1  + 𝜆6(min{0, 𝛥𝐶})2  

+ 𝜆7∑ ∑ ∑ (min{0, 𝛥𝐼𝐶,𝑆
𝑘,𝑖,𝑣𝑖})

2𝑉𝑖
𝑣𝑖=1

𝐼
𝑖=1

𝐾
𝑘=1   

(3.34) 
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Table 3-2. System Parameters 

Symbols Specification 

J, K, N, M 5 FBSs, 5 SUs, 5 CUs, 10 NUs 

I  3 videos 

Vi  3 videos, each has 3 versions 

W, P0 , Pj, 𝑃𝐶
𝑘 5MHz, 5W, 1W, 1mW 

N0, , γ0  10-12W, 4, 10dB 

{a, b} {0.5, 0.5} 

𝛾𝑖 [9806   76520   1644000 ] 

𝛽𝑖 [-0.9972  -1.1530  -1.0920] 

µ,  0.5, 1 

C* 10 Gbps, i.e., each MU is served 

at 0.5 Gbps 
 

Symbols Specification 

rn 
Fix to 1, i.e. all CUs have 100% of 

storage to cache. 

𝐿𝑖
𝑣𝑖 

[     11867      23734     35600 

    198680    264906    351000 

      33382      66763    113496 

  1172340  1758510  2344680       

    160410    320820    453960] Kbit 

𝐶𝑡ℎ
𝑣𝑖  

[   1000      2000      3000 

    3000      4000      5300 

  50000  100000  170000 

  10000    15000    20000         

  10000    20000    28300]Kbps 
 

To evaluate the performance of CRS, we compare it to the other three schemes including only caching 

(OCC), only resource sharing (ORS), and no caching nor resource sharing (NCS). A common computer with 

detailed information listed in Table 3-3 was used to simulate and evaluate. 

Table 3-3. Computer Information 

Computer Information 

Processor  

Processor type  

PHY processor packages 

Processor cores 

Logical processors 

Total PHY memory  

Operating System  

Intel(R) Core (TM) i7-8700 CPU @ 3.20GHz 

x64 Family 6 Model 14 Stepping 10, Genuine Intel 

1 

6 

12 

16,599,444KB 

Windows 10 

3.5.2. Performance of GA 

To evaluate the GA performance, binary bat algorithms (BBA) and exhaustive algorithms (EA) are 

implemented to compare the accuracy, and time complexity that enable to choose a set of proper parameters for 

GA to solve the CRS problem. The BBA includes the parameters (𝐿𝑖
0 = 0.25, 𝐸𝑖

0 = 0.1, 
𝑚𝑖𝑛

= 0, 
𝑚𝑎𝑥

= 2,  

 = 0.9,  = 0.9) [61]. Similar to the GA, the penalty function method is also applied to the BBA. Due to the 

difference of input parameters and operators used in GA and BBA, in this dissertation, GA and BBA are evaluated 

based on 1) equivalence in execution time, eg., NPG =20,000 in GA, the average time complexity is 1,003.68 

seconds and NPB =10,000 in BBA, the average time is 957.12 seconds, 2) the accuracy compared to EA and 3) the 

stability (EA have been implemented in Chapter 2). In this case, the system parameters include (J, N, M, K) set 

with low values of (3, 3, 5, 3) for implementing EA. 

Table 3-4. Comparation between GA, BBA and EA 

α 0 0.5 1.0 1.5 2.0 2.5 3.0 

EA (dB) 29.0286 31.2176 32.6980 34.1178 36.0832 37.2044 38.0584 

BBA (dB) 

Accuracy 

28.9100 

99.59% 

31.2176 

100.00% 

32.4708 

99.31% 

33.6306 

98.57% 

36.0832 

100.00% 

36.5090 

98.13% 

37.6689 

98.98% 

GA (dB) 

Accuracy 

29.0286  

100%  

31.2176  

100%  

32.6924  

99.98%  

34.1178  

100%  

36.0716  

99.97%  

37.1935  

99.97%  

38.0476 

99.97% 

As we can see in Table 3-4, comparing to the EA, i.e., the exact results, the GA can achieve the accuracy 

up to 100%. With the same execution time, GA shows more accuracy than BBA. Furthermore, when executing 

the algorithm 100 times (with   = 1), GA gives results more stable than BBA as shown in Figure 3-2. From these 

results, GA is selected to apply to solve the CRS problem with larger system parameters. 



  20 

  

 

 
Figure 3-2. Evaluate the stability of GA and BBA 

We further evaluate the trade-off between the accuracy and the time complexity of GA versus different 

populations (NP) while keeping α = 1. As shown in Table 3-5, the GA is done 100 iterations and chooses the worst 

case with the highest difference in PSNR compared to the EA: 

- The results clearly demonstrate that if we accept the low accuracy (i.e., 97.34%), the time complexity 

is extremely low (19.58s) at NP = 1000. 

- The accuracy increases versus the increase of NP with higher time complexity. 

The accuracy cannot be significantly improved when NP is high enough, i.e., NP = 10,000. Importantly, at 

NP = 10,000, the GA obtains a very high accuracy of 99.23% at very low time complexity of 317.42s that yields 

a significant time complexity reduction compared to the EA done at 5,664.45s. Based on the results in Table 3-4. 

Comparation between GA, BBA and EA, we set NP = 20,000 to implement the GA in the large scale of 5G UDNs 

to ensure a high accuracy at a reasonable time complexity. 

Table 3-5. GA performance in worst cases versus NP 

Metrics 
NP (α = 1) 

EA 
1,000 5,000 10,000 15,000 20,000 

Time (s)  19.58  142.50  317.42  556.01  795.63  5,664.45 

PSNR (dB) 30.8283  32.2547  32.4474  32.6486  32.6631  32.6980 

Accuracy 97.34% 98.64% 99.23% 99.85% 99.89% 100% 
 

 

To fulfill the GA performance evaluation, the GA 

with the convergence criteria (or the terminate 

condition) is presented in the Algorithm 3-1. The 

GA convergence rate is shown in Figure 3-3, 

where the “Best” is the highest 𝑄̅𝐹(𝑋𝑧) with respect 

to the best individual of each generation, the 

“Mean” is average of 𝑄̅𝐹(𝑋𝑧)  calculated for all 

individuals of a generation, and the “Error” is the 

value of penalty function F in (3.34) and (3.35). The 

results reveal that the GA begins to converge after 

about 20 generations and actually get converged 

situation from the 125-th generation when meeting 

the convergence criteria. Here, "Error" comes to 0 

meaning that all constraints are satisfied. The 

"Best" value does not change and is equal to 

"Mean", meaning that all individuals are as good as 

each other in the last generation. As a result, it is  

 

Figure 3-3. GA convergence rate 

certain that the GA is more flexible and feasible to apply to solving the CRS optimization problem in the large 

scale of 5G UDNs. 
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3.5.3. Performance Evaluation for CRS 

To evaluate the performance of CRS, we compare it to the other three schemes including only caching 

(OCC), only resource sharing (ORS), and no caching nor resource sharing (NCS) when changing the number of 

FBSs in Figure 3-4. If there are not any FBSs caching the video versions (J = 0), the OCC becomes the NCS and 

both have the same lowest performance due to no caching nor sharing. The CRS without caching becomes the 

ORS at the same performance but gaining higher performance than the OCC and the NCS since the CRS and the 

ORS benefit from downlink resource sharing. When increasing J, the performance of ORS and NCS keeps 

unchanged, while the performance of CRS and OCC significantly increases thanks to caching. The performance 

of CRS and OCC versus the increase of J gets saturated when J is high enough. It means that it is not necessary 

to cache many videos in all FBSs. Alternately, the number of FBSs caching the videos must be carefully selected 

to save the caching storage consumption as well as reduce the complexity of CRS strategy. 

Next, the CRS is compared to the OCC, the ORS, the NCS versus the number of SUs agreeing to share the 

downlink resources in Figure 3-5. If there are not any SUs agreeing to share the downlink resources, the CRS and 

the ORS become the OCC and the NCS, respectively. The increase of the SUs agreeing to share the downlink 

resources does not impact the performance of both the OCC and the NCS, but it yields more downlink resource 

sharing possibilities to increase the performance of CRS and ORS. Importantly, the CRS provides the highest 

playback quality of VASs compared to the other schemes. 

 

Figure 3-4. Performance of CRS, OCC, ORS, and 

NCS versus FBSs 

 

Figure 3-5. Performance of CRS, OCC, ORS, and 

NCS versus the number of SUs agreeing to share the 

downlink resources 
 

Figure 3-6 shows the performance of CRS, OCC, ORS, and NCS versus the skewed popularity exponent 

α. The results indicate that the system gains higher performance when α increases. The reason is that increasing 

α makes the popularity more skewed amongst the videos, and thus less videos are with higher popularity and more 

videos are with low popularity. In this context, the system focuses on serving the MUs the videos with higher 

popularity rather than the ones with lower popularity to gain higher performance. The proposed CRS outperforms 

the other OCC, ORS, and NCS thanks to the joint solution of caching and resource sharing techniques. The OCC 

is mostly better than the ORS because it is likely to provide more possibilities of caching and transmitting over 

better channels than the ORS. The NCS is the worst case due to without CRS assisted. 

Then, we investigate the effects of the constraints on the performance of CRS in Figure 3-7. To do so, 

decreasing the required throughput of MUs (δ) from 1 to 0.5, decreasing the caching storage of FBSs () by 

changing from 0.5 to 0.3 and increasing the target SINR of SUs (γ0) from 3dB to 5dB. 
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Figure 3-6. Performance of CRS, OCC, ORS, and 

NCS versus α 

 

Figure 3-7. Performance of CRS and other system 

parameters versus α 

It is obvious that if the required throughput of MUs decreases due to lower MUs’ playback resolutions, the 

channels that provide higher throughput are not selected for streaming to save the system bandwidth resource. In 

other words, the system serves the MUs lower quality (compared to the CRS) to meet the playback resolutions of 

the MUs. In case of decreasing the caching storage of FBSs  (from 0.5 to 0.3), the system has less chances to 

cache and thus provides lower playback quality. In addition, when the target SINR γ0 increases from 3dB to 5dB 

to ensure higher QoS for the SUs, the number of D2D communication sessions is reduced to make less interference 

impact on the SUs. This in turn reduces the system performance because it cannot exploit the D2D 

communications for video streaming in close proximity. 

 

Figure 3-8. Performance of CRS and FRS 

Finally, to investigate the 

performance of CRS in terms of 

playback quality and caching 

storage consumed in the FBSs, we 

compare the CRS to the full rate 

caching and resource sharing 

scheme (FRS). In FRS, we keep 

the resource sharing scheme 

applied while the FBSs always 

cache the video versions with the 

highest encoding rates, i.e., no 

video version selection, instead of 

selecting proper video versions in 

CRS. As shown in Figure 3-8, the 

FRS outperforms the CRS when  

α > 1. 

This can be explained that, when α is low, the system will serve MUs with videos version of the same 

popularity. In this case, selecting the right video version to cache and serve MUs will increase the system 

performance (satisfying MUs with less storage consumption). On the contrary, when α gets higher values, the 

system focuses on serving the video versions with higher popularity. In this context, while the performance of 

CRS is limited due to the caching storage and required throughput constraints, these constraints are relaxed in the 

FRS. In consideration of caching storage consumption, the FRS clearly uses higher caching storage than the CRS 
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does. The caching storage consumption of both CRS and FRS converges on a certain value with respect to the 

increase of α because the proper video versions in CRS and the video versions with the highest encoding rates in 

FRS are the same. 

3.6. Conclusion Chapter 3 

Chapter 3 have presented a user-demand-aware multi-rate cooperative video caching and delivery (CRS) 

scheme for high video streaming performance in 5G. In this chapter, the existing problems of Chapter 2 have been 

improved such as 1) QoS is evaluated more explicitly, 2) efficiently exploiting the available caching storage and 

spectrum resources of CUs and SUs and 3) the genetic algorithm is applied to solve the CRS problem efficiently. 

 

CONCLUSION 

1. Achieved results 

The two main contributions of the dissertation are summarized as follows: 

1- Propose a social-aware cooperative video caching and video delivering (SCS) scheme by exploiting the 

available caching storage and spectrum resources in multi-tier 5G ultra-dense network (UDN). The 

results were published in Mobile Networks & Application journal [C1] and presented at the 

Heterogeneous Networking for Quality, Reliability, Security and Robustness conference (Qshine 2018) 

[C2]. 

2- Propose a user-demand-aware multi-rate cooperative video caching and delivery (CRS) scheme by 

efficiently exploiting the available caching storage and spectrum resources in multi-tier 5G UDN. In 

particular, the CRS improves the SCS by 1) considering the video playback quality as the objective 

function, which is more visual than the video delivery capacity formulated in the SCS, 2) gaining higher 

opportunistic reuse of storage and spectrum resources, and 3) applying genetic algorithm (GA) to solve 

the optimal problem in large-scale 5G UDN. The results were published in IEEE Communications 

Letters [C3] and presented at the Recent Advances on Signal Processing, Telecommunications & 

Computing conference (SigTelCom2020) [C4]. 

2. Further research 

Some future research directions that can be developed from the dissertation given below: 

1- Improving the system model: A more effective system model needs to 1) consider videos with different 

versions for higher caching performance in multi-tier 5G UDN, 2) utilise spectrum resources for device-

to-device (D2D) communications and 3) take into account both social- and user-demand-aware as well 

as user mobility. In addition, another important caching tier at unmanned aerial vehicles (UAV) must 

be added. 

2- Improving evaluation criteria: A set of parameters to evaluate the quality of user experience (QoE) with 

strict criteria needs to be proposed. This set is to maximize not only the video delivery capacity or video 

playback quality, but also the video access rate, continuous playback, and playback stability. 

3- Improving algorithms: when the system is expanded and becomes more complicated together with strict 

QoE evaluated, the GA needs to be further studied in terms of proper accuracy and execution time. In 

addition, emerging algorithms such as machine learning, deep learning, etc. should be studied and 

compared to the current GA to select the best algorithm for solving the large-scale optimization 

problems in 5G UDN. 
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